Here is a super-simple implementation for solving Text Entailment using RoBERTa pre-trained model.
import torch
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("roberta-base")
model = AutoModel.from_pretrained("roberta-base")
def analyze(pr, hy): # pr is premise, hy is hypothesis
inputs = tokenizer.encode(pr, hy, return_tensors='pt')
outputs = model(inputs)
label = outputs[0].argmax().item()
if label == 0: return "contradiction"
elif label == 1: return "entailment"
else: return "neutral"